KINETICS OF WEAKLY TURBULENT WAVES IN A
NONSTATIONARY FLOW
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The kinetic equation for weakly turbulent waviness is obtained and investigated in {1, 2]. Distortion of
such waviness by a stationary spatially homogeneous flow is examined in [3]. The perturbation of a linear sys-
tem of surface waves by a random veloeity field with given characteristics is studied in [4]. The influence of
a weak nonstationary flow on surface waviness is examined in this paper. An analog of the collision integral
[1, 2] as well as components describing the linear and nonlinear system responses, nonlocal in time, to the
perturbation are present in the kinetic equation obtained.

The potential motion of a fluid allows of a Hamiltonian description whose Hamiltonian function in the pres-
ence of a flow with the velocity v(x, z, t) has the form {4]
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Here ¢(X, z, t) is the hydrodynamic potential, and z = 5(x, t) is the equation of the surface. The canonic vari-
ables for the Hamiltonian (1) are n{&, t), y&, t) = o, z, t 2 = In the case of weakly nonlinear, nondecaying
wave processes it is convenient to go over to the normal variables bi(t), by (t) {1, 2]. Under the weak action of
the velocity field v on an unperturbed system, the first terms of the expansion (1) in powers of bfé, bk and v
yield an effective Hamiltonian in the form of the sum of the Hamiltonians H, + H investigated in [1, 2] and the
addition Hy that is linear in v: '
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Here Hy describes surface wave scattering by the velocity field v:
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Analogous formulas can be obtained for the functions P and Q while the formula for T is in {5]. The equation
of motion for the dynamic variable f(b*, b) has the form
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For a statistical description of waviness we should go from (3) over to equations for the mean values which are
obtained by taking the average of equalities of the type (3) for the sequences of all the more complicating com-
binations of variables. The closure of these equations by using decoupling of the means results in a kinetic
equation of which the most interesting is the equation for the quantities (byby) = My associated with the am-
plitude spectrum of the surface waviness, its nondiagonality in the momentum is due to the presence of a spa-
tially inhomogeneous velocity field v. By taking the average for f = b]"gbk, we obtain
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where Sklkzk;kz =< bk b* b b >, and the operators Q,, Ry, and T, are generated by the Hamiltonians H,, Hy, and
Hy, respectively:
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where the contributions of the terms with the functions P and Q proportional to v2 are omitted. The quantity
ToS = (|H,, bibe}> is not known in Eq. (4), so it is next necessary to write an equation analogous to (4):
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The solution of (5) by iteration yields, to the accuracy of terms linear in v,
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Considering the correlator Y a slowly varying function of the time, we write this last formula in the form
d 1 —
T,S = [1 + (3_94) 34] (— Q") T,T,Y. ©)

We substitute (6) into (4) and following [1] decouple Y into a sum of trilinear terms in M. We consequently ob-
tain the kinetic equation
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in whose right side the second component equals
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where c.c. denotes the complex conjugate and replacement of the subscripts by k = Kk'. When there is no field

v a stationary distribution holds with time-independent mean value My — N6 (k ~k'). In this case grouping
of the components in products of the function T with identical subscripts results in 6 -function in the frequencies
assuring the transformation of (8) into the collision integral {1, 2]. The structure of the last component in the
right side of (7) is similar to the structure of the preceding one but its explicit form is not written down be-
cause of its awkwardness. The first difference between this component and (8) is the appearance of an inte-
gral operator with kernel RkJ', acting alternately on each of the functions T and Y with symmetrization of these
functions with respect to the arguments taken into account. The second difference is the appearance of an in-
tegral of R with respect to the time, evaluated between the limits —wo < 7' < {.

A qualitative estimate can be presented of the influence of the surface waviness perturbations by the ve-
locity field v in the case of a finite time t; of this action. The component R,M in the right side of (7) equals
zero for t >t, while the component (8) takes the form of the collision integral [1, 2] for t > t;, where this lat-
ter contains terms of the form
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where & is the sum of bilinear combinations of matrix elements and the quadruple integral in the wave field
momenta estimated for t /7y — « yields the asymptotic (1) /t)® for (9). The characteristic constant 7, is the
greatest value of the integrand in (9) at the boundary points k1,2 of the inertial interval of the wave numbers

k; =k = k. In the general case, the last component in the right side of (7) describes interaction of four surface
waves with the Fourier component of the field v, most effective for mutual resonance. This component, addi~
tional to the collision integral [1, 2], models the nonlinear mechanism of the nonlocal response, in time, of the
system of surface waves to the nonstationary inhomogeneous perturbation. Let us note that if the scale of the
homogeneity of the flow considerably exceeds the wavelength then its influence can be taken into account by
passage to a moving coordinate system [6]. In such an approximation the correction to the 6 correlativity My,
which can be substantial for k ~ k', is not taken into account successfuily.
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DEFORMATION AND BREAKUP OF A LIQUID FILM
UNDER THE ACTION OF THERMOCAPILLARY CONVECTION

A. L. Zuev and A. F. Pshenichnikov UDC 532.529.4; 536.25

Thermocapillary convection which develops in thin nonisothermal liquid layers produces significant de-
formation of the free surface [1-5]. This problem was considered in [1] within the framework of a model which
neglected capillary pressure. A solution was obtained in [2] for the special case of harmonic temperature dis-
tribution; the problem was solved in an approximation linear in temperature perturbation. A more general
formulation was considered in [3], where the equation of the free surface was found in an approximation analog-
ous to the boundary layer approximation. The present study will offer new experimental results and define con-
ditions under which thermocapillary convection in a liquid Ieads to breakup of the film into individual drops.

1. If the plane upon which a thin film of liquid is deposited is oriented perpendicular to the acceleration
of gravity then in dimensionless variables the equation of the free surface will have the form {3]

B b B — 288 + eb(2) = C, (L.1)

where £ (x) is the local thickness of the liquid layer; 4(x), the temperature of the free surface; C, a constant
defined from additional conditions; & = 3ATo7/o,; 04, the mean surface tension coefficient: or = ldo/dT|; AT,
the characteristic temperature difference, for example, between the hotter and colder parts of the layer, per
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